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Abstract. We describe an experiment in which the quadratures of the position of an harmonically-bound
mirror are observed at the attometer level. We have studied the Brownian motion of the mirror, both in the
free regime and in the cold-damped regime when an external viscous force is applied by radiation pressure.
We have also studied the thermal-noise squeezing when the external force is parametrically modulated.
We have observed both the 50% theoretical limit of squeezing at low gain and the parametric oscillation
of the mirror for a large gain.

PACS. 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps – 05.40.Jc Brownian motion –
04.80.Nn Gravitational wave detectors and experiments

1 Introduction

Optomechanical coupling, that is the cross-coupling be-
tween the motion of a mirror and a laser field reflected
upon it, first appeared in the context of interferometric
gravitational-wave detection [1,2] with the existence of
the so-called Standard Quantum Limit [3–5]. The unique
sensitivity of interferometric techniques has since then
been used for other high-sensitivity measurements, such
as AFM [6] or optical transducers [7,8]. The field has re-
cently encountered much attention and has gained a life of
its own in the quantum optics community: several schemes
involving a cavity with a movable mirror have been pro-
posed either to create non-classical states of both the radi-
ation field [9,10] and of the motion of the mirror [11–13],
or to perform QND measurements [14]. Recent progress
in low-noise laser sources and low-loss mirrors have made
the field experimentally accessible [15–17].

A recent trend in quantum optics is to fully reconstruct
the quantum state of either a mode of the radiation field
through the quantum tomography technique [18,19] or a
trapped atom [20], but to our knowledge, no such exper-
iment has yet been performed at the quantum level on a
mechanical oscillator.

In this paper, we present an experiment which com-
pletes the analysis of the motion of a plano-convex mirror
given in [15,16,21], reconstructing the phase-space distri-
bution of the motion through the simultaneous classical
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Recherche Scientifique, de l’École Normale Supérieure et de
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measurement of both quadratures of the mirror position.
The technique is applied to a variety of states of motion:
Brownian motion and its cold-damped and squeezed coun-
terparts.

In Section 2 we present the experimental setup used to
monitor the motion of the mirror and we describe how the
motion in phase-space can be reconstructed. In Section 3
we consider the case of a free mirror at thermal equilibrium
and we compare our experimental results to predictions of
the fluctuations-dissipation theorem [22]. The experimen-
tal setup has also been modified to include an external
viscous force applied to the mirror, and a similar analy-
sis is given in Section 4 in the corresponding case of the
cold-damped regime. Our results demonstrate that a new
equilibrium is obtained with a reduction of thermal noise.

In Section 5 we present an experiment of parametric
amplification of the thermal noise [23], below the oscil-
lation threshold. The experimental setup is modified in
order to modulate the strength of the viscous force, and
squeezing of the thermal noise has been observed. The ob-
servation of parametric oscillations of the mirror is finally
described in Section 6.

2 Evolution in phase-space

The mirror motion is monitored by an optomechanical dis-
placement sensor. It relies on the sensitivity of the phase of
a reflected light beam to mirror displacements. Monitor-
ing such a phase-shift allows to reconstruct the dynamical
evolution of the mirror. This phase-shift can be induced
by various kinds of mirror motions, either external [17,24]
or internal [15,25,26]. The former is important for sus-
pended mirrors since the excitation of pendulum modes
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of the suspension system leads to global displacements of
the mirror. The latter corresponds to deformations of the
mirror surface due to the excitation of internal acoustic
modes of the substrate. These various degrees of freedom
have however different resonance frequencies and one can
select the mechanical response of a particular mode by
using a bandpass filter.

In our experiment we detect only frequencies around
the fundamental acoustic resonance of the mirror so that
the mechanical response is mainly ruled by the behaviour
of this particular internal mode. The mirror motion can
then be approximated as the one of a single harmonic os-
cillator characterized by its resonance frequency ΩM , its
quality factor Q, and its mass M . This mass actually cor-
responds to an effective mass which describes the effective
motion of the mirror as seen by the light, that is the de-
formation of the mirror surface averaged over the beam
spot [25–27].

The temporal evolution of the mirror position x (t)
is given by linear response theory [28]. Assuming that a
force F is applied to the mirror, the displacement x [Ω] in
Fourier space at frequency Ω is related to the force by

x [Ω] = χ [Ω] F [Ω] , (1)

where χ [Ω] is the mechanical susceptibility of the mir-
ror. For a viscously-damped harmonic oscillator it has a
Lorentzian behaviour given by

χ [Ω] =
1

M (Ω2
M − Ω2 − iΓΩ)

, (2)

where Γ = ΩM/Q is the damping rate [29].
Depending on the nature of the applied force F , the

spectrum of the mirror motion will typically be peaked
around the mechanical resonance frequency ΩM over a
frequency span Γ , which is much smaller than ΩM for a
high-Q harmonic oscillator. To study the temporal evolu-
tion of the motion in phase-space, it is preferable to de-
scribe the motion in the rotating frame in order to remove
the intrinsic oscillatory dependence with time. This leads
to the two quadratures X1 and X2, defined by

x (t) = X1 (t) cos (ΩM t) + X2 (t) sin (ΩM t) . (3)

This equation yields the expression of the two quadratures
in Fourier space,

X1 [ω] = x [ΩM + ω] + x [−ΩM + ω] , (4)
X2 [ω] = −i (x [ΩM + ω] − x [−ΩM + ω]) . (5)

Quadratures X1 (t) and X2 (t) vary very slowly with time
(over a 1/Γ timescale), and ω which represents the fre-
quency mismatch Ω−ΩM between the analysis frequency
and the mechanical resonance frequency is always consid-
ered small as compared to ΩM .

Expressions of the quadratures in presence of an ap-
plied force can be derived from equation (1) by inserting
the expressions of x [ΩM + ω] and x [−ΩM + ω] in the def-

Fig. 1. Experimental setup. A plano-convex mirror is used
as the end mirror of a high-finesse cavity. A frequency and
intensity-stabilized laser beam is sent into the cavity and the
phase of the reflected beam is measured by a homodyne detec-
tion. A demodulation system working at the mechanical reso-
nance frequency ΩM extracts both quadratures of the signal.

initions of X1 [ω] and X2 [ω]. We find after simplification,

X1 [ω] = − 1
2MΩM

(
1

−iω + Γ/2

)
F2 [ω] , (6)

X2 [ω] =
1

2MΩM

(
1

−iω + Γ/2

)
F1 [ω] , (7)

where we have introduced the two quadratures F1 and F2

of the applied force, defined in Fourier space by similar
expressions as for X1 and X2 (Eqs. (4, 5)). Both position
quadratures have a Lorentzian response centered at zero
frequency and of width Γ .

The harmonic oscillator we consider throughout the
paper is the high-Q fundamental acoustic mode of a mir-
ror coated on a plano-convex resonator made of fused sil-
ica. The resonator is 1.5 mm thick at the center with a
diameter of 14 mm and a curvature radius of the convex
side of 100 mm. Such dimensions lead to a resonance fre-
quency of the fundamental mode of the order of 2 MHz.
The oscillator’s parameters have the following values [15],

ΩM = 2π × 1 859 kHz, M = 230 mg, Q = 44 000. (8)

The mirror coated on the flat side of the resonator is used
as the end mirror of a single-ended Fabry-Perot cavity
with a Newport high-finesse SuperMirror as input mirror
(Fig. 1). The whole provides a 1 mm-long cavity with
an optical finesse F = 37 000. The light beam entering
the cavity is provided by a frequency-stabilized titane-
sapphire laser working at λ = 810 nm. The light beam is
also intensity-stabilized and spatially filtered by a mode
cleaner.

Near an optical resonance of the cavity the intracav-
ity intensity shows an Airy peak when the cavity length
is scanned through the resonance, and the phase of the
reflected field is shifted by 2π. The slope of this phase-
shift strongly depends on the cavity finesse and for a dis-
placement δx of the end mirror one gets at resonance a
phase-shift δϕ on the order of

δϕ � 8F δx

λ
+ δϕn, (9)
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Fig. 2. Demodulation of the position signal: the signal ϕ(t)
given by the homodyne detection is filtered and mixed with
two π/2-dephased square signals at the mechanical resonance
frequency ΩM . Low-pass filters are used to extract the low-
frequency component of the quadratures.

where λ is the optical wavelength and δϕn the phase noise
of the reflected beam. At high frequency, all technical
noises can be suppressed and the phase noise corresponds
to the quantum noise of the incident beam which is in-
versely proportional to the square root of the light power.

The phase of the reflected field is monitored by a ho-
modyne detection working at the quantum level. For a
100 µW incident laser beam, we have shown that the sen-
sitivity to mirror displacements is limited by the quantum
noise of light and it has been measured to

δxmin = 2.8 × 10−19 m/
√

Hz, (10)

at an analysis frequency of 2 MHz [15].

To extract both quadratures of the mirror motion we
use a demodulation system at frequency ΩM (Fig. 2). A
bandpass filter of width 10 kHz first selects frequencies
around the fundamental resonance frequency in the sig-
nal given by the homodyne detection. The signal is then
mixed with two square signals at frequency ΩM , one de-
phased by π/2 with respect to the other one. Harmonics
of the output signals are cancelled out by two electronic
low-pass filters. The filters also have to cancel the signal
due to other acoustic modes of both the resonator and the
coupling mirror. The expected width of the fundamental
mode being of the order of 43 Hz and the closest mode
3 kHz above, we use second-order filters with a 500 Hz
cut-off frequency. We have checked the transfer function
of each filter in order to ensure that the dissymmetry be-
tween both channels is less than 1%.

Note that X1 and X2 are conjugate quantum observ-
ables and therefore cannot be measured simultaneously at
the quantum level. This is not in contradiction with our
experimental setup since we extract the position quadra-
tures X1 and X2 from the phase ϕ of the reflected field
which also contains the quantum phase noise δϕn of light
(Eq. (9)). A measurement of the quadratures is thus con-
taminated by the quantum noise of light so that it is not
possible to measure simultaneously both quadratures at
the quantum level. For this paper this does not constitute
a limitation since the signals studied in next sections (ther-
mal noise and external force) are way above the Standard
Quantum Limit imposed by the measurement and back-
action noises [3–5].

Fig. 3. Brownian motion of the plano-convex mirror in the
(X1, X2) phase-space. Full scale corresponds to ±2× 10−15 m.
Top: temporal acquisition over 500 ms. Bottom: histogram of
the distribution acquired over 10 minutes. The number of cells
is 256 × 256, the limit of sensitivity (quantum phase noise of
light) corresponding approximately to 1 cell.

3 Observation of Brownian motion

We present in this section the results obtained when the
mirror is free (no external force) and at room temperature.
The thermal equilibrium can be described as the result of
a coupling with a thermal bath via a Langevin force FT

applied on the mirror. The resulting Brownian motion is
the response of the acoustic mode to this force according to
equation (1). The fluctuations-dissipation theorem relates
the spectrum ST of the Langevin force to the dissipative
part of the mechanical susceptibility [22],

ST [Ω] = −2kBT

Ω
Im (1/χ [Ω]) , (11)

where kB is the Boltzmann constant and T the tempera-
ture of the thermal bath.

The sensitivity of our experiment is high enough to
detect the Brownian motion. We have already observed
the noise spectrum of the mirror displacement, which has
a Lorentzian shape centered at the mechanical resonance
frequency ΩM and a width Γ [15]. The height of the peak
is at least 4 orders of magnitude larger than the sensitivity
defined by the quantum phase noise of the reflected beam
(Eq. (10)).

We have observed the temporal evolution of the Brow-
nian motion by sending the outputs of the demodulation
system in a digital oscilloscope. The resulting traces of
the two quadratures X1 and X2 are plotted in the upper
curve of Figure 3 for an acquisition time of 500 ms. The
temporal trajectory in phase-space appears as a random
walk around the center (X1 = 0, X2 = 0).
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This plot can be compared to the Brownian motion of
a mirror coated on a torsion oscillator, as observed in ref-
erence [17] by a similar optical interferometry technique.
The larger density of points and the more circular shape
of our results is due to the larger ratio between the ac-
quisition time τacq and the evolution time (�2π/Γ ) of
the Brownian motion in phase-space. In our experiment,
τacq = 500 ms and Γ/2π = 43 Hz, so that the phase space
is mapped approximately 20 times. In the case of the tor-
sion oscillator, as the mechanical resonance frequency is
two orders of magnitude lower, Γ/2π � 20 mHz and the
phase space is mapped just once even for a τacq = 80 s ac-
quisition time. This explains why results in reference [17]
look similar to the Brownian motion of a free particle:
ergodicity is irrelevant on such short timescales.

Our results are more likely to be compared to the ther-
momechanical noise observed with an AFM cantilever [23],
although the simpler two-wave technique used in this work
yielded a lower sensitivity, on the order of 10−12 m. In this
experiment the resonance frequency also lay in the 20 kHz
range but the lower mechanical quality factor of the can-
tilever drastically lowered the timescale of the Brownian
motion, enabling to display results comparable to ours.

We have calibrated the observed displacements by us-
ing a frequency modulation of the laser beam. As shown
by equation (9) we measure a displacement with a refer-
ence corresponding to the optical wavelength. A displace-
ment ∆x of the mirror is thus equivalent to a frequency
variation ∆ν of the laser related to ∆x by

∆ν

ν
=

∆x

L
, (12)

where ν is the optical frequency and L the cavity length.
Plots of Figure 3 correspond to a full scale of the os-
cilloscope of ±100 mV. We have applied a frequency
modulation of calibrated amplitude ∆ν = 200 Hz and
obtained a deviation in phase-space of 27 mV. From equa-
tion (12) this corresponds to an equivalent displacement
∆x = 5.4 × 10−16 m, so that 1 mV is equivalent to
2 × 10−17 m and full scale in Figure 3 corresponds to
±2 × 10−15 m.

This calibration also allows to determine the sensi-
tivity of the measurement in phase-space. The quantum
phase noise of light induces a rms voltage noise at the out-
put of the demodulation system of 0.86 mV. The smallest
observable displacement in phase-space is then

∆xmin = 1.7 × 10−17 m, (13)

and corresponds to a few attometers. One can relate this
sensitivity to the one expressed in term of spectral am-
plitude (Eq. (10)). Since the phase noise of the reflected
beam is a white noise on the frequency scale of the mea-
surement, the minimum measurable displacement ∆xmin

in phase-space is equal to the spectral sensitivity δxmin

integrated over the measurement bandwidth, that is

∆x2
min = (δxmin)2

∫
|H [ω]|2 dω, (14)

where H [ω] is the transfer function of the low-pass filters
at the output of the demodulation system. From the value
of the spectral sensitivity (Eq. (10)) and the characteris-
tics of the filter (second-order filter with cut-off frequency
460 Hz and quality factor 2 200), one gets

∆xmin � 1.65 × 10−17 m, (15)

in excellent agreement with the measured value (Eq. (13)).
As shown by equation (14) the sensitivity depends on the
frequency cut-off of the filters and can be increased with
a smaller measurement bandwidth.

Acquiring data during a longer time allows to recon-
struct the distribution in phase-space. The full voltage
scale at the output of the demodulation system is di-
vided into 256 cells so that one cell approximately cor-
responds to the limit of sensitivity ∆xmin. We then per-
form an histogram by accumulating the temporal traces of
the quadratures in the 256× 256 cells. For an acquisition
time of 10 minutes the total number of points delivered by
the digital oscilloscope is of the order of 6 × 105 and the
phase-space is mapped approximately 25 000 times. One
then gets a good statistics for the phase-space distribution
as shown in the bottom curve of Figure 3. The distribu-
tion has a Gaussian shape with a revolution symmetry
verified with an agreement better than 1%. The width of
the distribution is

∆X1 = ∆X2 = 36.6 × 10−17 m. (16)

This result can be compared to the theoretical value ex-
pected for the Brownian motion of a harmonic oscillator.
The two quadratures FT1 and FT2 of the Langevin force
are uncorrelated and have a flat spectrum (ST1 = ST2 =
2ST). From equations (6, 7, 11) one gets the spectrum for
the two position quadratures

SX1 [ω] = SX2 [ω] =
Γ

MΩ2
M (ω2 + Γ 2/4)

kBT. (17)

Both noise spectra are centered around zero frequency
with a Lorentzian shape of width Γ . Integration over fre-
quency leads to the variances

∆X2
1 = ∆X2

2 =
kBT

MΩ2
M

· (18)

According to the characteristics of the harmonic oscillator
(Eq. (8)) one gets dispersions for the two quadratures of
36.3 × 10−17 m in excellent agreement with the experi-
mental value (Eq. (16)).

Finally we have determined the correlation function of
the motion in phase-space defined for quadratures Xi, Xj

(i, j = 1, 2) as

Cij (τ) = 〈Xi (t) Xj (t + τ)〉t , (19)

where the brackets 〈...〉t stand for the temporal average
over the measurement time. Curves a in Figure 4 show
the experimental result obtained for an acquisition time
of 10 minutes. As expected for a harmonic oscillator in
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Fig. 4. Plots in lin-log scale of the temporal correlation func-
tions C11 (τ ), C22 (τ ) for both quadratures as a function of the
delay τ ; (a) free motion at room temperature; (b) cold damped
mirror (Sect. 4); (c and d) parametric cooling (Sect. 5); (e)
phase noise of light.

thermal equilibrium, there is no cross-correlation between
the two quadratures (C12 = C21 = 0) and auto-correlation
functions C11 and C22 are equal and exhibit an exponen-
tial decay from their initial values corresponding to the
variances,

Cii (τ) = ∆X2
i exp (−Γτ/2) . (20)

The slope of the curve leads to a damping constant Γ/2π
of 48 Hz in good agreement with the expected value
(Γ/2π � 43 Hz).

Curve e in Figure 4 represents the correlation function
for the phase noise of the reflected beam obtained when
the cavity is out of resonance with the incident laser. One
gets an exponential decay related to the cut-off frequency
of the low-pass filters of the demodulation system. This
curve clearly shows that the measurement noise is almost
negligible as compared to the thermal noise of the mirror.

4 Cold-damped regime

We now study the temporal evolution of the mirror in the
cold-damped regime obtained by freezing the motion with
an additional radiation pressure applied on the mirror.
The principle of the cold damping mechanism [30] is to
monitor the thermal motion and to use an electronic feed-
back loop which corrects the displacement by applying an
appropriate damping force [16].

As shown in Figure 5 an acousto-optic modulator and
an intensity-modulated beam is added to the experimental
setup. This allows to apply a controlled radiation pressure
on the mirror. An electronic differentiator with a variable
gain drives the modulator to create a viscous force, that
is a force proportional to the measured velocity of the
mirror. The incident beam on the modulator is intensity-
stabilized in order to apply a well calibrated force.

The effect of this force is to modify the damping of the
mirror. It can be described as a change in the mechanical
susceptibility which now becomes [16]

χfb =
1

M (Ω2
M − Ω2 + (1 + g)ΓΩ)

, (21)

Fig. 5. Cold-damping experimental setup. The mirror is sub-
mitted to the radiation pressure of an auxiliary laser beam
reflected from the back on the mirror and intensity-modulated
by an acousto-optic modulator (AOM). The feedback loop al-
lows to apply an additional viscous force.

where g is a dimensionless parameter characterizing the
gain of the feedback loop and proportional to the elec-
tronic gain and to the intensity of the auxiliary beam. As
no additional thermal noise is associated with the cooling
process, the mirror motion is still described by the evo-
lution equation (1) where the mechanical susceptibility
χ is replaced by χfb. The resulting motion is equivalent
to a thermal equilibrium but at a different temperature,
depending on the gain g of the loop. The fluctuations-
dissipation theorem allows to define an effective temper-
ature Teff which is smaller than the room temperature T
for a positive gain g,

Teff =
T

1 + g
· (22)

The freezing of the mirror of course goes with a reduction
of the Brownian motion which would appear as a shrink-
ing of the distribution in phase-space. The variances of
quadratures X1 and X2 can be calculated in the same way
as in previous sections and one gets expressions similar to
equation (18) with temperature T replaced by Teff ,

∆X2
1 = ∆X2

2 =
kBT

MΩ2
M (1 + g)

· (23)

The change in the mechanical susceptibility also affects
the spectra of X1 and X2. They still have a Lorentzian
shape but with a width equal to the effective damping
(1 + g)Γ and a power at resonance reduced by a factor
(1 + g)2.

The cold damping of a mirror has already been demon-
strated by studying the thermal noise spectrum of the mir-
ror [16,21]. Noise reductions larger than 30 dB at the me-
chanical resonance frequency and temperature reduction
factors larger than 10 have been obtained. We present here
the results obtained in phase-space for a moderate gain
g � 3.

The motion of the cold-damped mirror is shown in
Figure 6 (top curve) which also displays the related his-
togram (bottom curve). As expected this distribution has
a Gaussian shape with cylindrical symmetry, but with a
reduced width as compared to the initial thermal distribu-
tion of Figure 3. Ratios of the variance of the quadratures
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Fig. 6. Cold-damped motion with a gain g = 3, in the (X1, X2)
phase-space (same scale as in Fig. 3). The shrinking of the mo-
tion is due to the cooling mechanism. Top: temporal acquisition
over 500 ms. Bottom: corresponding histogram acquired over
10 minutes.

between the two situations are in agreement with equa-
tion (23) and with the value of the feedback gain.

Curves b in Figure 4 show the auto-correlation func-
tions for the two quadratures. They correspond to the ones
of a harmonic oscillator in thermal equilibrium at a lower
temperature Teff . Compared to the Brownian motion at
room temperature, the initial value at τ = 0 is decreased
as the variances and the time constant of the exponen-
tial decay is reduced. This is associated with the increase
of the effective damping by the cold damping mechanism
((1 + g)Γ/2π � 170 Hz).

5 Parametric cooling

Distributions obtained in previous sections are symmet-
ric since there is no privileged quadrature. We now ex-
plore the possibility to obtain asymmetric distributions,
that is to squeeze the thermal noise. By analogy with
quantum squeezed states of light, one convenient way to
achieve such states is to use parametric amplification.
One can take advantage of the presence of an intensity-
controlled auxiliary laser beam to modulate some param-
eters of the mechanical oscillator at twice the resonance
frequency ΩM .

Parametric amplification of a mechanical harmonic
oscillator is usually done by modulating its spring con-
stant [23,31]. An equivalent mechanism is obtained for a
mirror by applying a modulated force proportional to the
position x of the mirror,

F (t) = 2gMΓΩM cos (2ΩM t)x (t) , (24)

where g is the gain of the parametric amplification. This
can easily be done in our experiment by monitoring the
mirror position and accordingly controlling the force ap-
plied by the auxiliary beam. Since we use an electronic
control it is even possible to differentiate the signal given
by the homodyne detection as in the case of cold damp-
ing, so that we apply a modulated force proportional to
the velocity ẋ of the mirror,

F (t) = 2gMΓ cos (2ΩM t) ẋ (t) . (25)

This corresponds to the less usual case of a parametric
amplification via a modulation of the relaxation rate of
the mechanical oscillator.

For such a viscous force one gets from equations (4, 5)
the two quadratures F1 and F2 of the applied force,

F1 [ω] = gMΓΩMX2 [ω] , (26)
F2 [ω] = gMΓΩMX1 [ω] . (27)

According to the evolution equations (6, 7) one finds that
the two quadratures X1 and X2 of the mirror position are
decoupled and obey the following equations,

X1 [ω] = − 1
2MΩM

(
1

−iω + Γ1/2

)
FT2 [ω] , (28)

X2 [ω] =
1

2MΩM

(
1

−iω + Γ2/2

)
FT1 [ω] , (29)

where FT1 and FT2 are the two quadratures of the
Langevin force FT and where Γ1, Γ2 are the quadrature-
dependent effective dampings in presence of the modu-
lated feedback force,

Γ1 = Γ (1 + g) , (30)
Γ2 = Γ (1 − g) . (31)

As for the cold damping mechanism, the parametric am-
plification changes the damping of the oscillator but the
effect now depends on the quadrature, one damping being
increased while the other one is decreased. As a result, one
quadrature of the motion is amplified whereas the other
one is attenuated. From equations (28, 29) one gets the
variances,

∆X2
1 =

kBT

MΩ2
M

Γ

Γ1
, (32)

∆X2
2 =

kBT

MΩ2
M

Γ

Γ2
, (33)

which have to be compared to equation (18).
In the case of a modulated restoring force (Eq. (24))

the two quadratures F1 and F2 of the force respectively
depend on X1 and X2 so that the evolution equation of
X1 and X2 are no longer decoupled. One has to consider
new quadratures obtained by a rotation of 45◦ in phase-
space in order to obtain decoupled equations similar to
equations (28, 29), with the same effective dampings Γ1

and Γ2. Both forces thus give the same results except for
a global rotation in phase-space.
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Fig. 7. Experimental setup of parametric amplification. An
electronic mixer modulates the signal of the feedback loop at
twice the mechanical resonance frequency ΩM . The demodula-
tion system is synchronized with the reference signal at 2ΩM .

Fig. 8. Parametric amplification of the Brownian motion
for a gain g = 0.8, in the (X1, X2) phase-space (same scale
as in Fig. 3). The squeezing of the thermal noise is due to
the quadrature-dependent cooling. Top: temporal acquisition
over 500 ms. Bottom: corresponding histogram acquired over
10 minutes.

The feedback loop in our experimental setup is mod-
ified in order to modulate the amplitude of the force ap-
plied by the auxiliary laser beam at twice the resonance
frequency ΩM (Fig. 7). A reference signal is used to syn-
chronize this modulation with the demodulation of the
quadratures. We can change the phase between the two
signals at ΩM and 2ΩM in order to select the decoupled
quadratures, either X1 and X2 for a modulated viscous
force (Eq. (25)) or quadratures rotated by 45◦ for a mod-
ulated restoring force (Eq. (24)).

The resulting motion in phase space is shown in Fig-
ure 8 for a parametric gain g = 0.8. The distribution still
has a Gaussian shape but with different widths for the two
quadratures. The distribution is no longer symmetric and

dispersions of both quadratures are found equal to

∆X1 = 27 × 10−17 m, ∆X2 = 78 × 10−17 m. (34)

Compared to the dispersion obtained at room tempera-
ture (Eq. (16)) the variance of quadrature X1 is reduced
by a factor 1/ (1 + g) whereas the one of quadrature X2

is increased by a factor 1/ (1 − g). One quadrature is thus
cooled while the other one is heated and the state corre-
sponds to a thermal squeezed state.

Curves c and d of Figure 4 show the auto-correlation
functions for the two quadratures X2 and X1, respectively.
Initial values (τ = 0) correspond to the variances deduced
from equation (34) and the time constants of the expo-
nential decays are related to the effective dampings Γ2

for curve c and Γ1 for curve d, in agreement with equa-
tions (30, 31). Note that we have aligned the two quadra-
tures X1 and X2 with the axes of the squeezed thermal
state by a proper choice of the phase between the two ref-
erence signals at ΩM and 2ΩM . We have then checked that
there is no cross-correlation between the two quadratures
(C12 = C21 = 0).

The treatment presented here is based on linear re-
sponse theory and is only valid for a gain g smaller than 1.
For a gain equal to 1, the effective damping Γ2 vanishes
(Eq. (31)) and the variance of quadrature X2 becomes
infinite (Eq. (33)). This actually corresponds to the oscil-
lation threshold of the parametric amplification and will
be studied in next section.

We have checked the theoretical behaviour of the para-
metric amplification as a function of the gain g in the
linear regime (g < 1). We have repeated the experiment
for different values of the gain and reported the effective
dampings Γi and the variances ∆X2

i for the two quadra-
tures (i = 1, 2). Points in Figure 9 show the experimental
results for these parameters, normalized to their respec-
tive values in thermal equilibrium at room temperature.
The gain g is estimated by an average over the indepen-
dent values of the effective dampings and the widths of
the distributions in phase-space.

The measurements are in very good agreement with
the theoretical expressions given by equations (30–33) and
shown as solid lines in Figure 9 without any adjustable
parameter. Both dampings have linear and opposite de-
pendence with the gain. The variance of quadrature X2

increases and diverges at the oscillation threshold g = 1,
whereas the one of quadrature X1 goes down to 0.5. The
efficiency of parametric amplification which is mainly re-
lated to the power of the auxiliary laser beam is large
enough to obtain a gain g close to unity. One then reaches
the 50% theoretical limit of squeezing for the variance of
quadrature X1.

6 Parametric oscillation

As in usual parametric amplification the system oscillates
above threshold, that is for a gain g larger than 1. This
threshold is actually a consequence of the fact that the
gain gΓ of parametric amplification becomes equal to the
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Fig. 9. Relative values of effective dampings Γ1 (a), Γ2 (b),
and variances ∆X2

1 (c), ∆X2
2 (d) normalized to their values in

thermal equilibrium at room temperature, for different gains
of amplification. Solid lines are theoretical predictions.

mechanical losses which are related to the damping Γ . The
damping Γ2 then vanishes and the noise of quadrature X2

becomes infinite. Above threshold the mirror oscillates at
frequency ΩM in phase with quadrature X2. The ampli-
tude of oscillation depends both on the gain and on sat-
uration mechanisms which take place in the parametric
oscillation regime. In our case they are mainly related to
the saturation of the intensity modulation of the auxiliary
laser beam.

The distribution of the mirror motion no longer ap-
pears as a peak located at the center of phase-space
(X1 = 0, X2 = 0). It rather looks like a squeezed dis-
tribution centered at a non-zero position along the X2

axis, the amount of squeezing depending on the distance
to threshold. As the modulation of the feedback loop is at
frequency 2ΩM , the system is invariant by a π phase-shift
and there are two possible positions for the center of the
distribution, one for a positive value of 〈X2〉, the other
one for a negative and opposite value −〈X2〉.

Figures 10 and 11 show the experimental temporal
evolutions and distributions obtained above threshold, re-
spectively for a gain close to unity and for a larger gain.
As expected the distribution in Figure 10 exhibits two
peaks along the X2 axis, symmetrically located with re-
spect to the center. The temporal evolution (top curve in
Fig. 10) also shows a concentration of the mirror motion
around the two opposite positions. One can however note
that the motion sometimes explores the neighbourhood of
the center of phase-space and can jump from one posi-
tion to the other one. Delay between two jumps can be
as small as a few seconds for a gain very close to unity
and corresponds to a few minutes in the case of Figure 10.
Over the 10-minutes acquisition time of the distribution

Fig. 10. Parametric oscillation of the mirror for a gain g > 1,
in the (X1, X2) phase-space. Scale is 4 times larger than in
Figure 3. Top: temporal acquisition over 500 ms. Bottom: cor-
responding histogram acquired over 10 minutes. The distri-
bution appears as two opposite squeezed peaks with non-zero
equal mean amplitudes.

Fig. 11. Parametric oscillation of the mirror for a gain g
much larger than 1, in the (X1, X2) phase-space (same scale
as in Fig. 10). Top: temporal acquisition over 500 ms. Bottom:
corresponding histogram acquired over 10 minutes.

the system has actually made only one jump and it has
stayed a longer time near the negative position than near
the positive one. This explains why the negative peak is
higher than the positive one. For a longer acquisition time
one would obtain symmetric peaks.
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For a larger gain the system can stay a few hours with-
out any jump. During the acquisition time the mirror then
stays near one position and the distribution exhibits only
one peak as shown in Figure 11.

Parametric oscillation also squeezes the mirror motion
along the X1 quadrature. As usual the squeezing effect is
larger close to threshold and the distribution goes back to
a disk for large gain (Fig. 11). In contrast with parametric
oscillation in optics [32,33], the fluctuations are of the
same order as the mean value of the oscillation, that is the
distance between the two peaks in Figure 10 is of the same
order as their widths. As a consequence one cannot use a
linear approach to describe the evolution of fluctuations
and the distribution does not appear as an ellipse but as
a more complex and distorted shape [34]. It is however
possible to evaluate the variance ∆X2

1 and one obtains in
the case of Figure 10 a variance equal to 0.55 times the
variance of the thermal noise at room temperature.

Let us finally note that the amplitude of the peaks (dis-
tance to the center of phase-space) depends on the gain.
One gets a larger amplitude for a higher gain. There is
however a limit related to the saturation of the feedback
loop. For a very large gain the radiation pressure applied
on the mirror is limited by the modulation capabilities of
the laser beam intensity. One can easily estimate this limit.
When the feedback loop saturates, the intensity modula-
tion tends towards a square signal with a 100% modulation
depth. The component of the radiation pressure force at
frequency ΩM is thus on the order of

Frad (t) � 2
P

c

4
π

cos (ΩM t) , (35)

where P is the light power. In this expression 2P/c rep-
resents the constant force exerted by light without modu-
lation and 4/π is a correction factor due to the fact that
the modulation corresponds to a square signal rather than
to a sine one. The response of the mirror is a forced os-
cillation with a non-zero mean amplitude 〈X2〉 obtained
by identifying the intrinsic damping force to the radiation
pressure,

MΓΩM 〈X2〉 � 2
P

c

4
π
· (36)

For a 500 mW beam, this corresponds to a mean displace-
ment of 6×10−15 m, in very good agreement with the one
observed in Figure 11.

7 Conclusion

We have presented an experiment of high-sensitivity dis-
placement measurement, reconstructing the phase-space
distribution of a mechanical oscillator with a thousand-
fold increase in sensitivity upon what had previously been
reported. The sensitivity of our experimental setup is cur-
rently limited to 1.7× 10−17 m by the damping timescale
of the oscillator, but it could easily be extended to the
attometer level by reducing the analysis bandwidth.

Both feedback schemes studied in this paper are able to
reduce the thermal noise of the mirror. Their effects how-
ever are different. In the case of cold damping the resulting
state is still a thermal equilibrium but at a lower effective
temperature, in principle down to a zero temperature for a
very large gain [35]. One then gets a symmetric Gaussian
distribution in phase-space. In contrast, parametric ampli-
fication only cools one quadrature of the mirror motion,
the other one being heated. One then gets squeezed ther-
mal states with an asymmetric Gaussian distribution in
phase-space. This situation is somewhat equivalent to the
one which would be obtained with quadrature-dependent
feedback loops where the zero-temperature quantum state
of the mirror should be reached via squeezed thermal
states [36].

These results show that the observation of motion
in phase-space gives a better understanding and control
of optomechanical coupling, on the way to experimental
demonstration of related quantum effects.
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